Weakly supervised object localization and segmentation in videos

نویسندگان

  • Mrigank Rochan
  • Shafin Rahman
  • Neil D. B. Bruce
  • Yang Wang
چکیده

We consider the problem of localizing and segmenting objects in weakly labeled video. A video is weakly labeled if it is associated with a tag (e.g. YouTube videos with tags) describing the main object present in the video. It is weakly labeled because the tag only indicates the presence/absence of the object, but does not give the detailed spatial/temporal location of the object in the video. Given a weakly labeled video, our method can automatically localize the object in each frame and segment it from the background. Our method is fully automatic and does not require any user-input. In principle, it can be applied to a video of any object class. We evaluate our proposed method on a dataset with more than 100 video shots. Our experimental results show that our method outperforms other baseline approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly supervised learning from images and videos∗

With the amount of on-line available digital content growing daily, large-scale, weakly supervised learning is becoming more and more important. In this talk we present some recent results for weakly supervised learning from images and videos. Standard approaches to object category localization require bounding box annotations of object instances. This time-consuming annotation process is sides...

متن کامل

Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly...

متن کامل

Weakly-Supervised Semantic Segmentation Using Motion Cues

Fully convolutional neural networks (FCNNs) trained on a large number of images with strong pixel-level annotations have become the new state of the art for the semantic segmentation task. While there have been recent attempts to learn FCNNs from image-level weak annotations, they need additional constraints, such as the size of an object, to obtain reasonable performance. To address this issue...

متن کامل

Incorporating Network Built-in Priors in Weakly-supervised Semantic Segmentation

Pixel-level annotations are expensive and time consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recently, CNN-based methods have proposed to fine-tune pre-trained networks using image tags. Without additional information, this leads to poor localization accuracy. This problem, however, was alleviated by making use of ob...

متن کامل

Efficient Object Localization and Segmentation in Weakly Labeled Videos

In this paper, we tackle the problem of efficiently segmenting objects in weakly labeled videos. Internet videos (e.g., YouTube) are often associated with a semantic tag describing the main object within the video. However, this tag does not provide any spatial or temporal information about the object within the video. So these videos are weakly labeled. We propose a novel and efficient approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Image Vision Comput.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2016